Temporal Trends in Stream N Concentrations and Biogeochemical Responses to Disturbances in Long-Term Reference Catchments

Alba Argerich¹, Sherri L Johnson², Stephen D Sebestyen², Charles C. Rhoades², Effie Greathouse¹, Mary Beth Adams², Devendra M. Amatya², John L. Campbell², George G. Ice³, Jeremy B. Jones⁴, Jennifer D. Knoepp², Gene E. Likens⁵, William H. McDowell⁶, and Peter M. Wohlgemuth²

¹Oregon State University

²US Forest Service Research and Development

³ NCASI

⁴University of Fairbanks Alaska

⁵Cary Institute of Ecosystem Studies

⁶University of New Hampshire

Do natural disturbances lead to similar responses?

Do natural disturbances lead to similar responses?

Reference catchments

VS.

Disturbed catchments

non stationary?

Trends in N
concentrations in
reference
catchments across
US

without major land use changes in the last 60 years

≥ 12 years of data (1996-2007) chemistry sampling intervals < 3 weeks daily Q measurements

- 1. How variable are catchments within a site? Is there more variation among Experimental Forests sites than among catchments within an Experimental Forest?
- 2. Are there long term trends in stream NO₃ and NH₄ concentrations over time at forested reference catchments across the continental platform?
 - 3. Are trends associated with changing deposition or discharge?

7 sites & 22 reference catchments

1. Is there more variation among Experimental Forests sites than among basins within an Experimental Forest?

Temporal variation:

o intra-annual

1. Is there more variation among Experimental Forests sites than among basins within an Experimental Forest?

Temporal variation:

- o intra-annual
- □ interannual

1. Is there more variation among Experimental Forests sites than among basins within an Experimental Forest?

Temporal variation:

- o intra-annual
- □ interannual

1. Is there more variation among Experimental Forests sites than among basins within an Experimental Forest?

Temporal variation:

- o intra-annual
- □ interannual

1. Is there more variation among Experimental Forests sites than among basins within an Experimental Forest?

o intra-annual □ interannual

--- among sites

2. Are there long term trends in stream NO₃ and NH₄ concentrations over time at forested reference catchments across the continental platform?

Existence of general trends?

Catchments within a site present the same trends?

Influence of the time period considered?

Trends in N concentrations in reference catchments across US WS2 Dec 1996-07 Oct Aug June Apr Feb WS18 Dec Oct Aug June Apr Feb **WS27** Dec Oct Aug June Apr Feb WS36 Dec Oct mg NO₃-N/L Aug 0.00 June 0.02 0.04 Apr 0.06 Feb . 0.08 0.10

NO₃-N

1996-07 1987-07 1972-07 (12 y) (21 y) (36 y)

Trends in wet NO ₃ -N deposition		1996-07 1987-07 (12 y) (21 y)	1978-07 (30 y)	1996-07 (12 y)	1987-07 (21 y)	1972-09 (38 y)	Trends in streamflow
Luquillo	Q1 Q2 Q3 QS		*	* * *			
Hubbard Brook	W3 W6 W7 W8 W9						decreasing trend
Fernow	WS4						
Coweeta	WS2 WS18 WS27 WS36						no significant trend
Marcell	S2 S5						
Fraser	Lexen E St. Louis						increasing
H. J. Andrews	Mack WS2 WS8 WS9		+				trend
*1985-2007	+1980-2	2007					

Is there more variation among sites than among basins within a site?

Yes, except at HJA. Stream nitrate and ammonium in reference catchments show great temporal and spatial variabilities that must be considered when evaluating loads and establishing nutrient criteria.

Are there generalized long term trends in stream NO₃ and NH₄?

No, forested reference catchments across the country show both increasing and decreasing trends in stream nitrogen.

Catchments within a site do not necessarily present the same trends.

The length of record examined can result in differing trends which highlights the importance of long-term studies.

Are trends associated with changing deposition or discharge?

Stream nitrate and ammonium increase when streamflow decreases. Stream ammonium increases when atmospheric ammonium wet deposition increases.

Stream Chemistry Synthesis Project

Objectives:

- 1. Comparison of long term data across sites. Synthesis papers.
- 2. Create a database for stream chemistry data (with standardized units, and documented analytical and sampling methods)

http://web.fsl.orst.edu/streamchem/

11 participant sites (and looking for more)!

Thursday 8-9:30 am H3: Information systems for accessing and assessing data

"StreamChemDB: development of a web-accessible database of stream chemistry"- Effie Greathouse

Questions?